Bacterial Recombination
   HOME

TheInfoList



OR:

Bacterial recombination is a type of genetic recombination in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
characterized by DNA transfer from one organism called donor to another organism as recipient. This process occurs in three main ways: *
Transformation Transformation may refer to: Science and mathematics In biology and medicine * Metamorphosis, the biological process of changing physical form after birth or hatching * Malignant transformation, the process of cells becoming cancerous * Tran ...
, the uptake of exogenous DNA from the surrounding environment. * Transduction, the virus-mediated transfer of DNA between bacteria. * Conjugation, the transfer of DNA from one bacterium to another via cell-to-cell contact. The final result of conjugation, transduction, and/or transformation is the production of genetic recombinants, individuals that carry not only the genes they inherited from their parent cells but also the genes introduced to their genomes by conjugation, transduction, and/or transformation. Recombination in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
is ordinarily catalyzed by a
RecA RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolog ...
type of recombinase. These recombinases promote
repair The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, and residential installa ...
of DNA damages by
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
. The ability to undergo natural transformation is present in at least 67 bacterial species.
Natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
is common among pathogenic bacterial species. In some cases, the
DNA repair DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA da ...
capability provided by recombination during transformation facilitates survival of the infecting bacterial pathogen. Bacterial transformation is carried out by numerous interacting bacterial
gene product A gene product is the biochemical material, either RNA or protein, resulting from expression of a gene. A measurement of the amount of gene product is sometimes used to infer how active a gene is. Abnormal amounts of gene product can be correlate ...
s.


Evolution

Evolution in bacteria was previously viewed as a result of mutation or genetic drift. Today, genetic exchange, or gene transfer is viewed as a major driving force in the evolution of
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Conne ...
s. This driving force has been widely studied in organisms like E. coli. Bacteria reproduces asexually, where daughter cells are clones of the parent. This clonal nature leads to random mutations that occur during DNA replication that potentially helps bacteria evolve. It was originally thought that only accumulated mutations helped bacteria evolve. In contrast, bacteria also import genes in a process called
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
, first discovered by the observation of mosaic genes at loci encoding antibiotic resistance. The discovery of homologous recombination has made an impact on the understanding of bacterial evolution. The importance of evolution in bacterial recombination is its adaptivity. For example, bacterial recombination has been shown to promote the transfer of multi drug resistance genes via homologous recombination that goes beyond levels purely obtained by mutation.


Mechanisms of Bacterial Recombination

Bacterial recombination undergoes various different processes. The processes include: transformation, transduction, conjugation and homologous recombination. Homologous recombination relies on cDNA transferring genetic material. Complementary DNA sequences transport genetic material in the identical homologous chromosomes. The paternal and maternal paired chromosomes will align in order for the DNA sequences to undergo the process of crossing over. Transformation involves the uptake of exogenous DNA from the encircling environment. DNA fragments from a degraded bacterium will transfer into the surrounding, competent bacterium resulting in an exchange of DNA from the recipient. Transduction is associated with viral-mediated vectors transferring DNA material from one bacterium to another within the genome. Bacterial DNA is placed into the bacteriophage genome via bacterial transduction. In bacterial conjugation, DNA is transferred via cell-to-cell communication. Cell-to-cell communication may involve plasmids that allow for the transfer of DNA into another neighboring cell. The neighboring cells absorb the F-plasmid (fertility plasmid: inherited material that is present in the chromosome). The recipient and donor cell come into contact during a F-plasmid transfer. The cells undergo horizontal gene transfer in which the genetic material is transferred. Mechanisms for double-stranded breaks The RecBCD pathway in homologous recombination repairs the double-strand breaks in DNA that has degraded in bacteria. Base pairs attached to the DNA strands go through an exchange at a Holliday junction. In the second step of bacterial recombination, branch migration. involves the base pairs of the homologous DNA strands to continuously be interchanged at a Holliday junction. This results in the formation of two DNA duplexes. The RecBCD pathway undergoes helicase activity by unzipping the DNA duplex and stops when the nucleotide sequence reaches 5′-GCTGGTGG-3′. This nucleotide sequence is known as the Chi site. RecBCD enzymes will change after the nucleotide sequence reaches the Chi site. The RecF pathway repairs the degradation of the DNA strands.


See also

* Genetic recombination


References

{{reflist, 32em Gene expression Modification of genetic information